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Abstract

The concept of 3D scene graphs (3DSGs) is increasingly001
recognized as a powerful semantic and hierarchical repre-002
sentation of the environment. Current approaches often ad-003
dress this at a coarse, object-level resolution. In contrast,004
our goal is to generate a 3DSG representation that takes005
into account also functional interactive elements (FIEs) of006
the object through intra-object relationships. The primary007
challenge lies in the scarcity of data that extends beyond008
instance-level detection and the inherent difficulty of cap-009
turing detailed object features using robotic sensors. We010
utilize the SceneFun3D dataset to train both 2D and 3D011
models to extract information about FIE in the scene. We012
propose two solutions: one using only RGB-D images to013
generate the 3DSG, and another incorporating the 3D point014
cloud (PCD) of the scene. Our experiments demonstrate015
that our approach achieves functional element segmenta-016
tion comparable to state-of-the-art 3D models and that017
our augmentation enables task-driven affordance ground-018
ing with higher accuracy than the current solutions.019

1. Introduction020

3D scene graphs (3DSGs) [1, 14] are hierarchical structures021
that capture a scene’s geometry and semantics, where nodes022
represent objects or spaces, and edges define their relation-023
ships. They enable agents to understand and reason about024
their environment, achieving unprecedented levels of open-025
world 3D scene understanding [18, 31]. Most 3DSGs fo-026
cus on object-level granularity, but for tasks like operating027
household items (e.g., fridges, thermostats), a finer repre-028
sentation is needed. This should include objects and func-029
tional interactive elements (FIEs) like knobs and buttons,030
along with their affordances like pulling or turning. In other031
words, 3DSGs must account for both inter- and intra-object032
relationships, a largely unexplored area in robotics and the033
focus of this paper (see Fig. 1). A major challenge in mod-034
eling intra-object relationships is accurately detecting FIEs,035

Legend
 Object node

 Functional element node

 Inter-object relationship edge

 Intra-object relationship edge

Language Query

Can you grab a frozen pizza?

Figure 1. An example of a generated 3D scene graph and its appli-
cation. The model represents both object and functional element
nodes linked through intra- and inter-object relationships.

which are small, sparsely represented in sensory data, and 036
often missing in public datasets, leading to poor detector 037
performance. To address this, we leverage SceneFun3D [5], 038
a large-scale dataset with sensory data and FIE annotations. 039

We generate data from this dataset and use the trained 040
models to extend 3D scene graphs by incorporating intra- 041
object relationships. Specifically, our contributions are: 042

• A method to detect FIEs in 2D and 3D, predict their af- 043
fordances, and assign contextualized descriptions. 044

• A framework, FunGraph, for extending 3D scene graphs 045
to represent FIEs and their affordances. 046

• A quantitative and qualitative evaluation of how this 047
structure supports FIE segmentation and task-driven af- 048
fordance grounding. 049

2. Related Work 050

3DSG Generation and Prediction. 3DSGs [1, 14] are spa- 051
tial data representations in the form of hierarchical graphs, 052
with nodes representing different parts of a scene, such 053
as buildings, rooms, and, at the most granular level, ob- 054
jects. These nodes are connected through relationships, 055
such as spatial ones (e.g., “A is next to B”). Different 056
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approaches have explored building 3DSGs from observa-057
tions, either through incremental creation from raw sen-058
sor inputs [9, 18, 19, 31] or post-processing of existing 3D059
scans [1, 16, 17, 29, 30, 32]. Only CLIO [19] mentions a060
need for different granularity. However, they only consider061
object parts and do not group them into objects. They rely062
on point-grid-prompted SAM [15] to propose object seg-063
ments, which is not reliably capable of detecting FIEs.064
Alternative Queryable Scene Representations. Implicit065
representations like NeRFs [21] are known for their high066
rendering accuracy making them ideal for small FIEs. How-067
ever, semantic NeRF variants [7, 13, 27, 36] and Gaussian068
Splatting [24] struggle with small objects and fine details, as069
they rely on pixel-aligned semantic features like DINO [3]070
or CLIP [25], which are insufficient for functional elements.071

Search3D [28] aims to create a hierarchical, open-072
vocabulary 3D scene representation for finer-grained enti-073
ties. However, its purely geometric segmentation fails to074
capture inter-relationships between entities, making queries075
like “turn off the light above the bin” impossible to answer.076
Dataset & Resources. The PartNet dataset [22] consists of077
dense annotations on 3D CAD models, and datasets like 3D078
AffordanceNet [6] and PartAfford [34] have been built upon079
it, focusing on Gibsonian affordances [8], which charac-080
terize how humans interact with objects and environments.081
Their focus is primarily on predicting the affordances of al-082
ready isolated objects rather than on our investigated prob-083
lem of identifying functional elements in a larger scene.084
MultiScan [20] takes a step toward highlighting movable085
object parts in a room scan; however, it does not provide086
accurate annotations for functional interactive elements.087

The recent SceneFun3D [5] was the first dataset an-088
notating the functional elements themselves in real room-089
scale scenes. Based on ARKitScenes [2], they select nine090
Gibsonian-inspired affordance labels to represent interac-091
tions with common elements in indoor environments (e.g.,092
Rotate, Hook Pull, etc.) and annotate the 3D point cloud di-093
rectly. To the best of our knowledge, no 2D resources with094
annotated functionally interactive elements currently exist.095

3. Method096

3.1. Problem Formulation097

Our work aims to extend the classical pipeline of 3DSG098
generation for indoor environments by incorporating intra-099
object relationships between scene objects and their 3D FIE.100
For example, we want a cabinet to have a direct relation-101
ship with its knobs, enhancing the 3DSG with information102
about the object’s possible interactions. The input to the103
proposed method, FunGraph, consists of a series of RGB-D104
observations, I = {Ii}i=1...N , and corresponding camera105
poses, P = {P i}i=1...N . Each image Ii is captured from106
pose P i using camera parameters Ki. In our variant Fun-107

Graph+PTv3, we also take the scene’s PCD as input. 108
The output of the proposed method is a 3D scene graph, 109

specifically a hierarchical graph G = (V, E). That is, the set 110
of nodes V can be partitioned into l layers (V = ∪l

i=1Vi). 111
Indeed, by design, introducing intra-object relationships 112
does not interfere with the hierarchical properties of the 113
structure: single parent, locality, and disjoint children [10], 114
which involve nodes V (the collection of objects of the 3D 115
scene) and edges E (the spatial relationships between ob- 116
jects) of our graph. In the following sections, we outline the 117
process of generating data from SceneFun3D [5] to train 118
models for detecting FIE from 2D and 3D data. 119

3.2. Generation of 2D Data 120

For each scene PCD in the dataset, along with 3D seg- 121
ment FIE annotations A = {Aj}j=1...M ⊂ PCD , and 122
RGB-D observations I captured from the scene, the goal 123
is to generate 2D annotated images with bounding boxes 124
for performing 2D object detection of FIE. For each image 125
Ii, each annotation Aj is projected on the 2D image plane 126
as aj = (xj yj zj)

T = KiP
−1
i Aj Then, we mask out 127

all points from aj that are behind (zj < 0), or outside of 128
the current camera image. We also remove all points where 129
the depth di in Ii differs from the projected depth zj by 130
more than a certain threshold θdepth. Finally, if the annota- 131
tion projected onto the image has a bounding box area larger 132
than a certain threshold θarea and the ratio of pixel points to 133
total points in Aj exceeds a threshold θpoints, it is kept; oth- 134
erwise, it is discarded. At the end, each image Ii retains 135
projected annotations, whose bounding boxes form our 2D 136
FIEs dataset. 137

3.3. Generation of 3D Data 138

Our goal is to generate groups of objects with associated 139
FIEs to train a 3D model for segmenting FIEs from an input 140
object PCD. Since SceneFun3D provides FIE annotations 141
only for the scene PCD, we combine these with object an- 142
notations from the same scenes in ARKit LabelMaker [11]. 143

We first align the ARKit LabelMaker 3D annotation 144
PCD with the SceneFun3D PCD using the transformation 145
provided by SceneFun3D. Then, we transfer annotations by 146
matching points between the two datasets, using a nearest- 147
neighbor (NN) approach to assign each ARKit LabelMaker 148
annotation to the closest θp points in the SceneFun3D PCD. 149

Since ARKit LabelMaker provides only semantic anno- 150
tations and not instance segmentations, we apply DBSCAN 151
clustering to extract object instances. 152

Finally, we associate FIEs with specific objects by 153
matching the center of mass of FIE annotations to the 154
closest object instance, ensuring that each FIE is correctly 155
linked to its corresponding object in our 3D FIEs dataset. 156
We do not consider this association if a FIE is more than 20 157
[cm] away from the closest object. 158
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3.4. FunGraph159

Recently, a clear methodology has emerged for generating160
3D scene graphs from RGB-D observations [9, 12, 18, 31].161
The process consists of three phases as shown in Fig. 2:162

• Detection: Image instance segmentation of entities.163
• Node creation: Multi-view merging.164
• Edge creation: Relationship generation.165

Each of these phases requires particular attention when166
dealing with objects the size of FIEs.167
Detection. For each Ii ∈ I, the q classes and bounding168
boxes of objects and FIEs are detected independently using169
YOLO-World [4] for objects and RT-DETR [35] for FIEs.170

After filtering out detections with confidence below θbbox171
and relative-to-image area ratio lower than θrarea, we prompt172
SAM2 [15] with each remaining bounding box. The seg-173
ments are then reprojected into 3D using the depth infor-174
mation of Ii and de-noised using DBSCAN clustering, re-175
sulting in a set of 3D object segments (or PCDs): O[i] =176

{O[i]
m ,O[i]

a } = {o[i]
m1, . . . ,o

[i]
mp,o

[i]
ap+1, . . . ,o

[i]
aq} where the177

subscript m denotes objects and a denotes FIE.178

Each object has a label c[i]j , and semantic features f [i]
j from179

CLIP-extracted bounding-box crops. We discard FIE that180
do not overlap with any object’s box by at least θrel.181
Context-Based Label Refinement. With the detector trained182
using the resource in Sec. 3.2, FIEs are classified into a183
closed set of Gibsonian-inspired affordances based on the184
SceneFun3D annotations. To ensure the method’s open vo-185
cabulary ability and obtain more concrete descriptions of186
the FIEs, we prompt GPT-4o [23] for each group of object187
and its associated FIEs annotated using their bounding box188
and current label name. For example, this allows us to ob-189
tain the names “Refrigerator Handles” and “Freezer Han-190
dle” from an image of a refrigerator, which is associated191
with two “Hook Pull” FIEs through bounding box overlap.192

Node Creation. For each image, each o
[i]
mj ∈ O[i]

m is com-193
pared to PCDs of object nodes in the graph. To merge, two194
PCDs must exceed θgeo according to the geometric simi-195
larity score of [31] and the cosine similarity between the196
semantic features of node and the object should be higher197
than θsem. The object segment is merged into the node with198
the highest combined similarity score.199

After each merge, the node’s PCD is denoised and down-200
sampled, and semantic features are updated as in [18]. If no201

similarity check is passed, o[i]
mj is merged into a new empty202

node with a zero-feature vector.203
Then, for each o

[i]
ak associated with o

[i]
mj , merged into204

node n, we search for the best matching node among the205
associated FIE nodes of the 3DSG related to n. Only the206
geometric score is used, with a different threshold θgeo2.207
The same merging process is followed, with two key dif-208
ferences: redundant points are removed without downsam-209
pling, and the FIE segment is merged with all nodes that210

Intra-object relationships
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Figure 2. Overview of our 3DSG generation pipeline.

pass the similarity check. This approach is beneficial be- 211
cause FIE-sized objects are often only partially observed, 212
and these gaps could lead to a final merge later. If no sim- 213
ilarity check is passed, the FIE is merged into a newly ini- 214
tialized empty node and associated with node n. 215

Periodically, nodes are processed in batches, merging 216
object nodes first, followed by related FIE nodes if they pass 217
the similarity checks discussed. 218
Edge Creation. For inter-object relationships, during node 219
creation, we track image sources of object segments that 220
merge into different nodes and then prompt GPT-4o with 221
images where all detected objects are highlighted to extract 222
binary relationships between objects (i, j). The most com- 223
mon relationship is added as an edge between the nodes of 224
i and j, encoding this spatial knowledge. 225

For intra-object relationships, we use the bounding box 226
association described in the detection phase to establish a 227
“has-part” directed relationship, linking the object to its as- 228
sociated FIE. An attribute of this relationship is the affor- 229
dance label extracted by the 2D detector. 230

3.5. FunGraph+PTv3 231

When a high-resolution PCD K of the scene is available, we 232
refine our FunGraph reconstruction by selecting, for each 233
reconstructed object along with its associated FIEs, the θp 234
closest points within 2 [cm] of K, thereby obtaining a PCD 235
N . To mitigate noise from the 2D mask reconstruction of 236
FIEs, we apply PTv3 [33] trained on 3D instance segmen- 237
tation using the resource in Sec. 3.3 to N . The result is a 238
list of FIE PCDs, which we then use to replace those in the 239
nodes of our 3DSG by assigning the attributes and labels of 240
each FunGraph FIE to the closest 3D predicted FIE. 241

4. Experiments 242

We validate the accuracy of FIEs segmentation with our 243
3DSG generation solutions and investigate the usefulness of 244
our 3DSGs in responding to task-driven affordance queries, 245
such as “open the left window above the radiator”. 246
FIEs 3D Segmentation. Among the nine classes 247
of SceneFun3D, we retained only the seven most ap- 248
propriate for describing FIE, discarding “unplug” and 249
“plug in” along with their respective annotations. Be- 250
fore validating the 3D, we train RT-DETR on 2D detec- 251

3



CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Affordance AP AP50 AP25

FunGraph 5.9 16.0 30.3
FunGraph+PTv3 8.1 21.2 37.7
Mask3D-F [5, 26] [7.9] [18.3] [26.6]

Table 1. Results for 3D FIEs segmentation. Mask3D-F is evalu-
ated on a larger dataset and with all the classes. The full model is
not yet available.

tion using an 80/20 train-validation split of the dataset252
Sec. 3.2, ensuring that train and val images come from253
different scenes. To benchmark the AP metrics [5]254
of the 3D reconstruction and segmentation of the FIE255
2D detected, we select 10 scenes from our validation256
dataset: 423070, 423306, 423738, 434892, 435357,257
435715, 435724, 442392, 464754, 467330, and as-258
sociate the PCD of our FIE node with the eight nearest259
points within 5 [mm] from the original laser scan, for which260
the ground truth segmentation has been annotated. Note261
that we retain all FIE detections, even without object as-262
sociations, to avoid penalizing scores when parent objects263
are undetected. For the evaluation of FunGraph+PTv3 we264
also associated the detected FIE to the closest segmented265
object in [11] if they have no parent object. Given that the266
measured performance (Tab. 1) on the different splits of the267
same datasets are in a similar range, we carefully conclude268
that FunGraph achieves similar results to SOTA approaches269
[26] that directly predicts the class for the points in 3D. We270
also comment that the information provided by FIE’s parent271
objects is a valuable direction for improving task results.272

Affordance Grounding To answer task-driven affordance273
grounding queries, we convert our 3DSG representation274
into a JSON format, retaining information about each275
node’s ID, 3D center of mass, 3D bounding box extension,276
label, relationships with the environment, and functionality277
affordance if it is a FIE.278

We then instruct GPT-4o to find in the JSON the ID(s) of279
the node(s) that solve the query. This highlights the general280
advantage of 3DSG representations as they can be easily281
parsed by LLMs. On the same set of scenes, and in the same282
manner discussed in Sec. 4, we retrieve the closest points283
to our prediction in the original PCD and compute the 3D284
PCD intersection over union (IoU) between our prediction285
and the ground truth answer elements. We count a query as286
passed if the IoU is at least 25% (AP25).287

In Tab. 2, we report per-scene results and compare them288
to the SOTA ConceptGraphs [18] that can answer uncon-289
strained language queries on the map. As is evident from290
the numbers, ConceptGraphs does not account for the pos-291
sibility of providing FIEs as answers to queries. Instead, it292
returns whole object PCDs, which results in low IoU with293
the ground truth. Therefore, we further report AP>0, where294
we count queries successfully if there is even a single over-295

Scene #Queries ConceptGraphs FunGraph (ours)

AP25 AP>0 AP25 AP>0

423070 8 0.0 25.0 50.0 50.0
423306 3 0.0 0.0 33.3 66.7
423738 21 0.0 57.1 33.3 85.7
434892 5 0.0 40.0 40.0 40.0
435357 10 0.0 50.0 30.0 60.0
435715 12 0.0 8.3 33.3 75.0
435724 10 0.0 10.0 10.0 20.0
442392 8 0.0 25.0 37.5 37.5
464754 18 0.0 22.2 27.8 44.4
467330 4 0.0 50.0 100 100

Total 99 0.0 31.3 33.3 58.6

Table 2. Results for task-driven affordance grounding. For each
method, the percentage of success (IoU at least 25% and > 0%)
in task-driven affordance grounding is shown for the scenes in our
validation sample. The number of queries for each scene is re-
ported.

lap point between the response and the ground truth. The 296
results, however, show that the return of ConceptGraphs is 297
still less accurate, indicating that including FIEs and object- 298
part relations in the 3DSG improves retrieval localization 299
and generally allows for answering more queries correctly. 300
Interestingly, one of the main advantages of storing seg- 301
mented FIEs in the 3DSG, is that the scores between 3D 302
FIE segmentation and affordance grounding do not differ 303
much because all the information needed is stored and only 304
needs to be identified. 305

5. Conclusions 306

In this work, we presented FunGraph, the first 3DSG so- 307
lution that captures intra-object relationships, focusing on 308
FIEs to enable tasks requiring interaction with objects in a 309
scene. Through our experiments, we demonstrated that our 310
finer-grained representation achieves performance compa- 311
rable to SOTA 3D detectors and highlight the method’s su- 312
periority to direct point cloud affordance grounding. How- 313
ever, our standard approach is fundamentally rooted in the 314
2D domain. It does not rely on segmenting a pre-existing 315
high-quality PCD, which makes it also suitable for robotics 316
applications with affordable RGB-D sensing. We are able to 317
detect and store information about the FIEs of objects while 318
extending the general 3DSG generation pipeline and pre- 319
serving the graph’s hierarchical property. In the future, we 320
will augment 3D scene graphs with even more fine-grained 321
representations by introducing intermediate object parts be- 322
fore linking the objects themselves to functional elements. 323
Moreover, we will embed all necessary manipulation details 324
into FIE nodes, enabling robots to interact with objects and 325
ultimately achieve an end-to-end solution. 326
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A. Implementation details470

For the 2D dataset generation, we use θdepth = 0.1 [m],471
θdepth = 800 [pixels2], and θpoints = 0.6 as thresholds.472
The thresholds used in the 3DSGs generation pipeline are473
θbbox = 0.4, θrarea = 0.7, θrel = 1, θgeo = 0.5, θsem =474
0.6, θgeo2 = 0.6, θnum = 3 and θp = 8. All computations475
are performed on a machine with an NVIDIA 4090 GPU,476
64GB RAM + 64GB SWAP, and an AMD Ryzen 9 7950X477
Processor.478
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