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Contributions
• Introduces FunGraph, a novel framework for embedding 

functional interactive elements (FIEs) and their affordances into 
3D scene graphs. 
• Models not only inter-object relationships but also intra-object 

ones. For example, an oven is related to its control knobs, and a 
door to its handle.
• Addresses data scarcity and sensing challenges in fine-grained 3D 

object understanding by automatically generating 2D annotations 
from the SceneFun3D [1] dataset. This is particularly relevant for 
robotic incremental solutions that rely on RGB-D streams.
• Achieves state-of-the-art performance in FIE segmentation and 

improves accuracy in task-driven affordance grounding.
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Affordance AP AP50 AP25

FunGraph 5.9 16.0 30.3
FunGraph+PTv3 8.1 21.2 37.7
Mask3D-F [5, 26] [7.9] [18.3] [26.6]

Table 1. Results for 3D FIEs segmentation. Mask3D-F is evalu-
ated on a larger dataset and with all the classes. The full model is
not yet available.

our 3DSGs in responding to task-driven affordance queries,
such as “open the left window above the radiator”.
FIEs 3D Segmentation. Among the nine classes
of SceneFun3D, we retained only the seven most ap-
propriate for describing FIE, discarding “unplug” and
“plug in” along with their respective annotations. Be-
fore validating the 3D, we train RT-DETR on 2D detec-
tion using an 80/20 train-validation split of the dataset
Sec. 3.2, ensuring that train and val images come from
different scenes. To benchmark the AP metrics [5]
of the 3D reconstruction and segmentation of the FIE
2D detected, we select 10 scenes from our validation
dataset: 423070, 423306, 423738, 434892, 435357,
435715, 435724, 442392, 464754, 467330, and as-
sociate the PCD of our FIE node with the eight nearest
points within 5 [mm] from the original laser scan, for which
the ground truth segmentation has been annotated. Note
that we retain all FIE detections, even without object as-
sociations, to avoid penalizing scores when parent objects
are undetected. For the evaluation of FunGraph+PTv3 we
also associated the detected FIE to the closest segmented
object in [11] if they have no parent object. Given that the
measured performance (Tab. 1) on the different splits of the
same datasets are in a similar range, we carefully conclude
that FunGraph achieves similar results to SOTA approaches
[26] that directly predicts the class for the points in 3D. We
also comment that the information provided by FIE’s parent
objects is a valuable direction for improving task results.
Affordance Grounding To answer task-driven affordance
grounding queries, we convert our 3DSG representation
into a JSON format, retaining information about each
node’s ID, 3D center of mass, 3D bounding box extension,
label, relationships with the environment, and functionality
affordance if it is a FIE.

We then instruct GPT-4o to find in the JSON the ID(s) of
the node(s) that solve the query. This highlights the general
advantage of 3DSG representations as they can be easily
parsed by LLMs. On the same set of scenes, and in the same
manner discussed in Sec. 4, we retrieve the closest points
to our prediction in the original PCD and compute the 3D
PCD intersection over union (IoU) between our prediction
and the ground truth answer elements. We count a query as
passed if the IoU is at least 25% (AP25).

In Tab. 2, we report per-scene results and compare them

Scene #Queries ConceptGraphs FunGraph (ours)

AP25 AP>0 AP25 AP>0

423070 8 0.0 25.0 50.0 50.0
423306 3 0.0 0.0 33.3 66.7
423738 21 0.0 57.1 33.3 85.7
434892 5 0.0 40.0 40.0 40.0
435357 10 0.0 50.0 30.0 60.0
435715 12 0.0 8.3 33.3 75.0
435724 10 0.0 10.0 10.0 20.0
442392 8 0.0 25.0 37.5 37.5
464754 18 0.0 22.2 27.8 44.4
467330 4 0.0 50.0 100 100

Total 99 0.0 31.3 33.3 58.6

Table 2. Results for task-driven affordance grounding. For each
method, the percentage of success (IoU at least 25% and > 0%)
in task-driven affordance grounding is shown for the scenes in our
validation sample. The number of queries for each scene is re-
ported.

to the SOTA ConceptGraphs [18] that can answer uncon-
strained language queries on the map. As is evident from
the numbers, ConceptGraphs does not account for the pos-
sibility of providing FIEs as answers to queries. Instead, it
returns whole object PCDs, which results in low IoU with
the ground truth. Therefore, we further report AP>0, where
we count queries successfully if there is even a single over-
lap point between the response and the ground truth. The
results, however, show that the return of ConceptGraphs is
still less accurate, indicating that including FIEs and object-
part relations in the 3DSG improves retrieval localization
and generally allows for answering more queries correctly.
Interestingly, one of the main advantages of storing seg-
mented FIEs in the 3DSG, is that the scores between 3D
FIE segmentation and affordance grounding do not differ
much because all the information needed is stored and only
needs to be identified.

5. Conclusions
In this work, we presented FunGraph, the first 3DSG so-
lution that captures intra-object relationships, focusing on
FIEs to enable tasks requiring interaction with objects in a
scene. Through our experiments, we demonstrated that our
finer-grained representation achieves performance compa-
rable to SOTA 3D detectors and highlight the method’s su-
periority to direct point cloud affordance grounding. How-
ever, our standard approach is fundamentally rooted in the
2D domain. It does not rely on segmenting a pre-existing
high-quality PCD, which makes it also suitable for robotics
applications with affordable RGB-D sensing. We are able to
detect and store information about the FIEs of objects while
extending the general 3DSG generation pipeline and pre-
serving the graph’s hierarchical property. In the future, we

TABLE IV
RESULTS FOR TASK-DRIVEN AFFORDANCE GROUNDING

Scene #Queries ConceptGraphs FunGraph (ours)

AP25 AP>0 AP25 AP>0

423070 8 0.0 25.0 50.0 50.0
423306 3 0.0 0.0 33.3 66.7
423738 21 0.0 57.1 33.3 85.7
434892 5 0.0 40.0 40.0 40.0
435357 10 0.0 50.0 30.0 60.0
435715 12 0.0 8.3 33.3 75.0
435724 10 0.0 10.0 10.0 20.0
442392 8 0.0 25.0 37.5 37.5
464754 18 0.0 22.2 27.8 44.4
467330 4 0.0 50.0 100 100

Total 99 0.0 31.3 33.3 58.6

For each method, the percentage of success (IoU at least 25% and > 0%)
in task-driven affordance grounding is shown for the scenes in our
validation sample. The number of queries for each scene is reported.

and the ground truth. The results, however, show that the
return of ConceptGraphs is still less accurate, indicating that
the inclusion of functional elements and object-part relations
in the 3DSG not only improves retrieval localization but also
generally allows for answering more queries correctly.

Interestingly, one of the main advantages of storing seg-
mented functional elements in the 3DSG, is that the scores
between 3D functional element segmentation and affordance
grounding do not differ much because all the information
needed is stored and only needs to be identified. To further
contextualize the numbers from Table IV, the AP25 of the
best model in [5] is 17.5. Even considering the above-
mentioned issues of their unavailable models, the comparison
indicates that 3DSGs are better representations for answering
task-driven queries than direct retrieval from the point cloud.

D. Label Refinement Ablation Study

As described in Section III-B, the first detection of func-
tional elements only associates them with their affordance
label. To obtain also a semantically meaningful label, we
prompt GPT-4o with each group of object and its associated
functional elements in the image. We call this approach
“GPT-Context” to highlight that the model is aware of
the intra-object relationship. We compared this approach to
prompting GPT-4o with only the functional element’s bound-
ing box annotation (approach “GPT-No-Context”) and using
CLIP features to classify it within a closed vocabulary of
functional elements. We manually verified 100 detected func-
tional objects, labeling them as ’C’ (correct), ’W’ (wrong), or
’P’ (partially correct), where partially correct cases indicate
predictions like a “cabinet drawer knob” instead of a “cabinet
door knob.” Results are reported in Table V. CLIP features
alone perform poorly due to the small size of functional
elements and their bag-of-words behavior, which generates
many incorrect results. The best refinements come from the
GPT-Context solution, supporting our design choice of early
functional-elements-object grouping.

TABLE V
ABLATION STUDY ON CONTEXT-BASED LABEL REFINEMENT

CLIP GPT-No-Context GPT-Context

C P W C P W C P W

Handle 32.5 37.5 30.0 77.5 12.5 10.0 82.5 10.0 7.5
Knob 43.3 33.3 23.3 23.3 56.7 20.0 70.0 23.3 6.7

Button 10.0 15.0 75.0 55.0 20.0 25.0 85.0 10.0 5.0
Other 20.0 0.0 80.0 30.0 20.0 50.0 70.0 30.0 0.0

Total 30.0 28.0 42.0 52.0 28.0 20.0 78.0 16.0 6.0

Correct (C), partially correct (P), and wrong (W) predictions % are
reported. In total, 100 objects have been studied: 40 handles, 30 knobs, 20
buttons, and 10 other functional elements (pedals, touchscreens, etc.).

V. LIMITATIONS

Even though our approach shows promising results com-
pared to the state of the art in 3D scene graph research for
functional element segmentation and retrieval, there is still
room for improvement.

We took advantage of recent developments in resources for
3D functional elements to demonstrate how this information
can be incorporated into a 3DSG. However, we emphasize
that this is only an initial extension of the structure in terms
of sub-object parts. For example, our method directly relates
the knob to the cabinet but not to the drawer of the cabinet, an
intermediate information that may still be valuable to retain.

Further exploration is needed to better relate functional
elements that may be shared between multiple objects or
mounted between two objects. For example, knobs com-
monly found between an oven and a stove are among the
most frequent sources of naming and association errors,
according to our analysis.

VI. CONCLUSIONS

In this work, we presented FunGraph, the first 3D scene
graph solution that captures intra-object relationships, fo-
cusing on functional elements to enable tasks requiring
interaction with objects in a scene.

Through our experiments, we demonstrated that our finer-
grained representation achieves performance comparable to
state-of-the-art 3D detectors and highlight the superiority
of the method to direct point cloud affordance grounding.
However, our approach is fundamentally rooted in the 2D
domain. It does not rely on segmenting a pre-existing high-
quality point cloud, which makes it also suitable for robotics
applications with affordable RGB-D sensing. We are able to
detect and store information about the functional elements
of objects while extending the general 3DSG generation
pipeline and preserving the graph’s hierarchical property.

In the future, we will augment 3D scene graphs with
even more fine-grained representations by introducing inter-
mediate object parts before linking the objects themselves
to functional elements. Moreover, we will integrate all the
necessary manipulation information into functional element
nodes, enabling robots to perform motions that interact with
objects and ultimately providing an end-to-end solution.

Our 3D FIEs segmentation is 
similar to SOTA 3D models.

We produce accurate OV
labels for the 3D FIEs nodes.

Compared to the SOTA, our method 
responds to task-driven affordance 
queries with higher accuracy. 

Results

Affordance AP AP50 AP25

FunGraph 5.9 16.0 30.3
FunGraph+PTv3 8.1 21.2 37.7
Mask3D-F [5, 26] [7.9] [18.3] [26.6]

Table 1. Results for 3D FIEs segmentation. Mask3D-F is evalu-
ated on a larger dataset and with all the classes. The full model is
not yet available.

our 3DSGs in responding to task-driven affordance queries,
such as “open the left window above the radiator”.
FIEs 3D Segmentation. Among the nine classes
of SceneFun3D, we retained only the seven most ap-
propriate for describing FIE, discarding “unplug” and
“plug in” along with their respective annotations. Be-
fore validating the 3D, we train RT-DETR on 2D detec-
tion using an 80/20 train-validation split of the dataset
Sec. 3.2, ensuring that train and val images come from
different scenes. To benchmark the AP metrics [5]
of the 3D reconstruction and segmentation of the FIE
2D detected, we select 10 scenes from our validation
dataset: 423070, 423306, 423738, 434892, 435357,
435715, 435724, 442392, 464754, 467330, and as-
sociate the PCD of our FIE node with the eight nearest
points within 5 [mm] from the original laser scan, for which
the ground truth segmentation has been annotated. Note
that we retain all FIE detections, even without object as-
sociations, to avoid penalizing scores when parent objects
are undetected. For the evaluation of FunGraph+PTv3 we
also associated the detected FIE to the closest segmented
object in [11] if they have no parent object. Given that the
measured performance (Tab. 1) on the different splits of the
same datasets are in a similar range, we carefully conclude
that FunGraph achieves similar results to SOTA approaches
[26] that directly predicts the class for the points in 3D. We
also comment that the information provided by FIE’s parent
objects is a valuable direction for improving task results.
Affordance Grounding To answer task-driven affordance
grounding queries, we convert our 3DSG representation
into a JSON format, retaining information about each
node’s ID, 3D center of mass, 3D bounding box extension,
label, relationships with the environment, and functionality
affordance if it is a FIE.

We then instruct GPT-4o to find in the JSON the ID(s) of
the node(s) that solve the query. This highlights the general
advantage of 3DSG representations as they can be easily
parsed by LLMs. On the same set of scenes, and in the same
manner discussed in Sec. 4, we retrieve the closest points
to our prediction in the original PCD and compute the 3D
PCD intersection over union (IoU) between our prediction
and the ground truth answer elements. We count a query as
passed if the IoU is at least 25% (AP25).

In Tab. 2, we report per-scene results and compare them

Scene #Queries ConceptGraphs FunGraph (ours)

AP25 AP>0 AP25 AP>0

423070 8 0.0 25.0 50.0 50.0
423306 3 0.0 0.0 33.3 66.7
423738 21 0.0 57.1 33.3 85.7
434892 5 0.0 40.0 40.0 40.0
435357 10 0.0 50.0 30.0 60.0
435715 12 0.0 8.3 33.3 75.0
435724 10 0.0 10.0 10.0 20.0
442392 8 0.0 25.0 37.5 37.5
464754 18 0.0 22.2 27.8 44.4
467330 4 0.0 50.0 100 100

Total 99 0.0 31.3 33.3 58.6

Table 2. Results for task-driven affordance grounding. For each
method, the percentage of success (IoU at least 25% and > 0%)
in task-driven affordance grounding is shown for the scenes in our
validation sample. The number of queries for each scene is re-
ported.

to the SOTA ConceptGraphs [18] that can answer uncon-
strained language queries on the map. As is evident from
the numbers, ConceptGraphs does not account for the pos-
sibility of providing FIEs as answers to queries. Instead, it
returns whole object PCDs, which results in low IoU with
the ground truth. Therefore, we further report AP>0, where
we count queries successfully if there is even a single over-
lap point between the response and the ground truth. The
results, however, show that the return of ConceptGraphs is
still less accurate, indicating that including FIEs and object-
part relations in the 3DSG improves retrieval localization
and generally allows for answering more queries correctly.
Interestingly, one of the main advantages of storing seg-
mented FIEs in the 3DSG, is that the scores between 3D
FIE segmentation and affordance grounding do not differ
much because all the information needed is stored and only
needs to be identified.

5. Conclusions
In this work, we presented FunGraph, the first 3DSG so-
lution that captures intra-object relationships, focusing on
FIEs to enable tasks requiring interaction with objects in a
scene. Through our experiments, we demonstrated that our
finer-grained representation achieves performance compa-
rable to SOTA 3D detectors and highlight the method’s su-
periority to direct point cloud affordance grounding. How-
ever, our standard approach is fundamentally rooted in the
2D domain. It does not rely on segmenting a pre-existing
high-quality PCD, which makes it also suitable for robotics
applications with affordable RGB-D sensing. We are able to
detect and store information about the FIEs of objects while
extending the general 3DSG generation pipeline and pre-
serving the graph’s hierarchical property. In the future, we

Data Generation for Fine-tuning
• We produce data for 2D and 3D detection and segmentation.

Method


